11 research outputs found

    A Poetics of the Self. Ricoeur’s Philosophy of the Will and Living Metaphor as Creative Praxis

    Get PDF
    This article presents the conceptual groundwork for a “poetics of the self” by theorizing how and why a creative praxis rooted in Ricoeur’s philosophy of the will and hermeneutics of the living metaphor contributes to an individual’s on-going development of self-awareness. Its focus is on the affective fragility that manifests in an individual’s intermediary status of polarities – finitude and infinitude, freedom and nature – in conjunction with Ricœur’s tensional status of metaphorical truth. The act of writing poetry, it suggests, can be an aesthetic mediation that develops insight into the primordial discord of the servile will

    Transcriptional reprogramming during floral fate acquisition

    Get PDF
    Coordinating growth and patterning is essential for eukaryote morphogenesis. In plants, auxin is a key regulator of morphogenesis implicated throughout development. Despite this central role, our understanding of how auxin coordinates cell fate and growth changes is still limited. Here, we addressed this question using a combination of genomic screens to delve into the transcriptional network induced by auxin at the earliest stage of flower development, prior to morphological changes. We identify a shoot-specific network suggesting that auxin initiates growth through an antagonistic regulation of growth-promoting and growth-repressive hormones, quasi-synchronously to floral fate specification. We further identify two DNA-binding One Zinc Finger (DOF) transcription factors acting in an auxin-dependent network that could interface growth and cell fate from the early stages of flower development onward.Peer reviewe

    A root phloem pole cell atlas reveals common transcriptional states in protophloem-adjacent cells

    Get PDF
    The phloem pole atlas has over 10,000 cells, with an unprecedented resolution of the transcriptional dynamics in phloem development. Despite distinct mature transcriptional states, co-expression networks show common states in protophloem-adjacent cells. Single-cell sequencing has recently allowed the generation of exhaustive root cell atlases. However, some cell types are elusive and remain underrepresented. Here we use a second-generation single-cell approach, where we zoom in on the root transcriptome sorting with specific markers to profile the phloem poles at an unprecedented resolution. Our data highlight the similarities among the developmental trajectories and gene regulatory networks common to protophloem sieve element (PSE)-adjacent lineages in relation to PSE enucleation, a key event in phloem biology. As a signature for early PSE-adjacent lineages, we have identified a set of DNA-binding with one finger (DOF) transcription factors, the PINEAPPLEs (PAPL), that act downstream of PHLOEM EARLY DOF (PEAR) genes and are important to guarantee a proper root nutrition in the transition to autotrophy. Our data provide a holistic view of the phloem poles that act as a functional unit in root development.Peer reviewe

    The Colours of Forgiveness: Visual Art, Spirituality, Trauma & Mental Health

    No full text
    These images explore the intersections of childhood trauma, mental health and spirituality.&nbsp

    A root phloem pole cell atlas reveals common transcriptional states in protophloem-adjacent cells

    Get PDF
    The phloem pole atlas has over 10,000 cells, with an unprecedented resolution of the transcriptional dynamics in phloem development. Despite distinct mature transcriptional states, co-expression networks show common states in protophloem-adjacent cells. Single-cell sequencing has recently allowed the generation of exhaustive root cell atlases. However, some cell types are elusive and remain underrepresented. Here we use a second-generation single-cell approach, where we zoom in on the root transcriptome sorting with specific markers to profile the phloem poles at an unprecedented resolution. Our data highlight the similarities among the developmental trajectories and gene regulatory networks common to protophloem sieve element (PSE)-adjacent lineages in relation to PSE enucleation, a key event in phloem biology. As a signature for early PSE-adjacent lineages, we have identified a set of DNA-binding with one finger (DOF) transcription factors, the PINEAPPLEs (PAPL), that act downstream of PHLOEM EARLY DOF (PEAR) genes and are important to guarantee a proper root nutrition in the transition to autotrophy. Our data provide a holistic view of the phloem poles that act as a functional unit in root development.Peer reviewe

    Transcriptional reprogramming during floral fate acquisition

    Get PDF
    Coordinating growth and patterning is essential for eukaryote morphogenesis. In plants, auxin is a key regulator of morphogenesis implicated throughout development. Despite this central role, our understanding of how auxin coordinates cell fate and growth changes is still limited. Here, we addressed this question using a combination of genomic screens to delve into the transcriptional network induced by auxin at the earliest stage of flower development, prior to morphological changes. We identify a shoot-specific network suggesting that auxin initiates growth through an antagonistic regulation of growth-promoting and growth-repressive hormones, quasi-synchronously to floral fate specification. We further identify two DNA-binding One Zinc Finger (DOF) transcription factors acting in an auxin-dependent network that could interface growth and cell fate from the early stages of flower development onward.Peer reviewe
    corecore